
IJAICT Volume 5, Issue 2, February 2018
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2015.10.08 Published on 05 (2) 2018

Corresponding Author: Ms. B. Suriya, RVS Technical Campus, Coimbatore, Tamilnadu, India. 803

A EFFICIENT ROLE MINING –RBAM WITH CONSTRAINT
SATISFACTION PROBLEM

Ms. B. Shuriya
RVS Technical Campus,

Coimbatore, Tamilnadu, India

Ms. S. Thenmozhi
RVS Technical Campus,

Coimbatore, Tamilnadu, India

Abstract— The main areas of research related to access control
concern the identification of methodologies and models. With the ever-
increasing number of users and IT systems, organizations have to
manage large numbers users permissions in an efficient manner. Role-
based access control is the most wide-spread access control model. Yet,
companies still find it difficult to adopt RBAC because of the
complexity of identifying a suitable set of roles. Roles must accurately
reflect functions and responsibilities of users in the organization.
When hundreds or thousands of users have individual access
permissions, adopting the best approach to engineer roles saves time
and money, and protects data and systems. Among all role engineering
approaches, searching legacy access control systems to find de facto
roles embedded in existing permissions is attracting an increasing
interest. Data mining techniques can be used to automatically propose
candidate roles, leading to a class of tools and methodologies referred
to as role mining. The user role assignment is framed using RBAM
algorithm with CSP Technique.

Keywords — RBAM, CSP, Role Mining.

I. INTRODUCTION

In this context, role-based access control (RBAC) [2] has become
the norm for managing entitlements within commercial
applications. RBAC simplifies entitlement management by using
roles. A role uniquely identifies a set of permissions, and users
are assigned to appropriate roles based on their responsibilities
and qualifications. When users change their job function, they are
assigned new roles and old roles are removed from their profile.
This results in users’ entitlements matching their actual job
functions. While RBAC is not a panacea for all ills related to
access control, it offers great benefits to users managers and
administrators, especially non-technical people. First, RBAC
helps business users define security policies [5].

Second, RBAC implements the security engineering principles
that support risk reduction, such as separation of duties (SoD) and
least privilege [3]. Finally, roles minimize system administration
effort by reducing the number of relationships among users and

permissions [1]. Despite the widespread adoption of RBAC-
oriented systems, organizations frequently implement them
without due consideration of roles. To minimize deployment
effort or to avoid project scope creep, organizations often neglect
role definition in the initial part of the deployment project. Very
often, organizations do not invest enough time to define roles in
detail; rather, they define high-level roles that do not reflect actual
business requirements. The result of this careless role definition
process is that deployed RBAC systems do not deliver the
expected benefits. Additionally, it also leads to role misuse [3].

This is the main reason why many organizations are still reluctant
to adopt RBAC. The role engineering discipline [4] addresses
these problems. Its aim is to properly customize RBAC systems
in order to capture the needs and functions of the organizations.
Yet, choosing the best way to design a proper set of roles is still
an open problem. Various approaches to role engineering have
been proposed, which are usually classified as: top-down and
bottom-up. Top-down requires a deep analysis of business
processes to identify which access permissions are necessary to
carry out specific tasks.

Bottom-up seeks to identify de facto roles embedded in existing
access control information. Since bottom-up approaches usually
resort to data mining techniques, the term role mining is often
used. In practice, top-down approaches may produce results that
con- flict with existing permissions, while bottom-up approaches
may not consider the high-level business structure of an
organization [6]. For maximum benefit, therefore, a hybrid of top-
down and bottom-up is often the most valid approach.

1.1. User- Role Assignment
UP ⊆ USERS × PERMS, the set of the existing user-permission
assignments to be analyzed;
 Perms: USERS → 2 PERMS , the function that identifies
permissions assigned to a user. Given u ∈ USERS, it is defined as
perms(u) = {p ∈PERMS | 〈u, p〉 ∈ UP}.

© 2018 IJAICT (www.ijaict.com)

Corresponding Author: Ms. B. Suriya, RVS Technical Campus, Coimbatore, Tamilnadu, India. 804

 Users: PERMS → 2 USERS , the function that identifies users
that have been granted a given permission. Given p ∈ PERMS, it
is defined as users(p) = {u ∈ USERS | 〈u, p〉 ∈ UP}.

System Configuration-ϕ = 〈USERS, PERMS, UP〉

RBAC System-ψ = 〈ROLES, UA, PA, RH〉

Lemma : Given r1 ,r2 ∈ ROLES such that r2 r1 , the confidence
between r1 ,r2 is given by the ratio between supports of child and
parent roles: confidence(r2 r1) = support(r2)/support(r1).
PROOF By definition, confidence(r2 r1) is equal to:
|auth_users(r2)| |auth_users(r1)| · |USERS| |USERS| =
support(r2) support(r1) for any given role pair r1, r2 .

The administration cost of the role-set built upon the PERMS
lattice is neither a maximum nor a minimum of the cost function.
In fact, it is possible to increase the cost by increasing the number
of role-user relationships. For example, let PERMS = {1, 2, 3} so
that ROLES = { {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} }.
If the role {1, 2, 3} is removed from ROLES, a combination of
the remaining candidate roles must be used to cover its
permissions, such as {1, 2} and {1, 3}. This doubles the number
of relationships in UA. Depending on α, β, γ, δ, c(r) and the
number of users assigned to {1, 2, 3}, this could increase the cost
even if ROLES and PA are smaller. Moreover, the cost is greater
than the optimal. In fact, if we delete all roles representing
combinations of permissions not possessed by any user, the
cardinality of ROLES and PA diminishes while UA remains the
same. If c(r) ≥ 0, the cost diminishes as well

 Pattern Identification in Users' Entitlements:
o Enumerating Candidate Roles
o Minimizing the Effort of Administering RBAC

 Devising Meaningful Roles:
o Measuring the Meaning of Roles
o Visual Role Mining

 Taming Role Mining Complexity:
o Splitting Up the Mining Task
o Stable Roles
o Imputing Missing Grants

 The Risk of Unmanageable Roles:
o The Risk of Meaningless Roles
o Ranking Users and Permissions

II. RBAM
RBAM-purge procedure
1: procedure RBAM-purge(Rk−1 , Hk , Hk−1 ,PA,UA, ¯σ, ¯τ, ¯υ)

2: {Remove from parents the users also assigned to children}

3: UA ← {〈u,r〉 ∈ UA | u 6∈ S h∈Hk :h.prnt=r ass_users(h.child)}

4: for all r ∈ Rk−1 do

5: r.act_supp ← |{〈u,r ′ 〉 ∈ UA | r ′= r}|/|USERS|

 6: end for

7: {Identify removable roles with low support}

8: ∆ ← r ∈ Rk−1 | r.act_supp = 0 ∨ r.act_supp ≤ σ¯ (k − 1) + τ¯ + υ¯c(r) ∧

 9: r.supp · |USERS| = S h∈Hk−1 :h.child=r ass_users(h.prnt)

 10: {Remove roles with low support}

11: for all r ∈ ∆ do

12: {Transfer only direct hierarchies}

13: for all hp ∈Hk−1 ,hc ∈Hk : hp .child=hc .prnt=r do

14: if ∄h ′∈ Hk : h ′ .child = hc .child ∧ h ′ .prnt 6∈ ∆ ∧

 15: ∧ ass_perms(h ′ .prnt)⊇ass_perms(hp .prnt) then

16: h.prnt ← hp .prnt

17: h.child ← hc .child

18: h.conf ← hp .conf · hc .conf

19: Hk ← Hk ∪ {h}

20: end if 21: end for

 22: {Transfer users to parents, then remove r}

23: UA ← {〈u,r ′ 〉 | ∃h ∈ RH,u ∈ USERS : h.prnt = r ′ ∧ h.child = r ∧ 〈u,r〉 ∈ UA}

24: for all r ′∈ {h.prnt | h ∈ RH ∧ h.child = r} do

25: r ′ .act_supp ← |{〈u,r ′′〉 ∈ UA | r ′′= r ′ }|/|USERS|

26: end for

27: Rk−1 ← Rk−1 \ {r} 28: Hk−1 ← {h ∈ Hk−1 | h.child 6= r}

29: Hk ← {h ∈ Hk | h.prnt 6= r}

30: PA ← {〈p,r ′ 〉 ∈ PA | r ′ 6= r}

31: UA ← {〈u,r ′ 〉 ∈ UA | r ′ 6= r}

32: end for 33: return 〈Rk ,Rk−1 , Hk , Hk−1 ,PA,UA〉

35: end procedure

IJAICT Volume 5, Issue 2, February 2018

© 2018 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2015.10.08 Published on 05 (2) 2018

Corresponding Author: Ms. B. Suriya, RVS Technical Campus, Coimbatore, Tamilnadu, India. 805

It represents the union of all the sets Rk . For each r ∈ ROLES are
identified: • r.supp: role r support; • r.act_supp: role r actual
support; • r.degree: the number of permissions assigned to r. ◮
The set RH that hierarchically links candidate roles to one
another. It represents the union of all sets Hk . This means that
only direct relationships are determined. For each h ∈ RH are
identified: • h.prnt and h.child: parent and child roles
hierarchically related; • h.conf: confidence value between roles. ◮
The set PA. This set merely correlates candidate roles with their
assigned permissions. ◮ The set UA. It contains the proposed
role-user assignments. At the end of step k, relationships between
users and permissions assigned to the level-k roles are added to
the set.

III. CSP TECHNIQUE

A Constraint Satisfaction Problem (CSP) consists of the
following: • a set of n variables V = {x1. . . xn}. • Discrete, finite
domains for each of the variables D = {D1, . . . , Dn}. • a set of
constraints R = {R1, . . . , Rm} where each Ri(di1, . . . , dij) is a
predicate on the Cartesian product Di1 × · · · × Dij that returns
true iff the value assignments of the variables satisfies the
constraint. The problem is to find an assignment A = {d1. . . dn|di
∈ Di} such that each of the constraints in R is satisfied.

 APO procedures
procedure initialize di ← random d Di ;

 pi ← sizeof(neighbors) + 1;

mi ← true;

mediate ← false;

add xi to the good list;

send (init, (xi , pi , di , mi , Di , Ci)) to neighbors;

 initList ← neighbors;

 end initialize;

when received (init, (xj , pj , dj , mj , Dj , Cj)) do Add (xj , pj , dj ,
mj , Dj , Cj) to agent view;

if xj is a neighbor of some xk ∈ good list do add xj to the good
list;

add all xl ∈ agent view ∧ xl ∈/ good list that can now be
connected to the good list;

pi ← sizeof(good list);

end if; if xj �/ initList do send (init, (xi , pi , di , mi , Di , Ci)) to
xj ;

 else remove xj from initList;

CSP has been shown to be NP-complete, making some form of
search a necessity.Asynchronous Partial Overlay As a cooperative
mediation based protocol, the key ideas behind the creation of the
APO algorithm are

• Using mediation, agents can solve subproblems of the DCSP
using internal search.

• These local sub problems can and should overlap to allow for
more rapid convergence of the problem solving.

• Agents should, over time, increase the size of the subproblem
they work on along critical paths within the CSP. This increases
the overlap with other agents and ensures the completeness of the
search.

IV. CONCLUSION

A wide range of users, including IT administrators, business-line
managers, and human resources, should feed this process. Most
important, the alignment between business and IT is of utmost
importance. Second, we demonstrated that the workload of
security analysts and role engineers can largely be alleviated via
automated approaches to role engineering.The redundancy is
removed within user-permission assignments, thus leading to
improved mining algorithm performances. Then estimated the
minimum number of roles identifiable in the given dataset, hence
allowing for the implementation of fast, approximating role
mining algorithms.

References

[1] Colantonio, R. Di Pietro, A. Ocello, and N. V. Verde. A formal
framework to elicit roles with business meaning in RBAC systems. In
Proceedings of the 14th ACM Symposium on Access Control Models
and Technologies, SACMAT ’09, pages 85–94, 2009.

[2] American National Standards Institute (ANSI) and InterNational
Committee for Information Technology Standards (INCITS).
ANSI/INCITS 359-2004, Information Technology – Role Based Access
Control, 2004.

IJAICT Volume 5, Issue 2, February 2018

© 2018 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2015.10.08 Published on 05 (2) 2018

© 2018 IJAICT (www.ijaict.com)

Corresponding Author: Ms. B. Suriya, RVS Technical Campus, Coimbatore, Tamilnadu, India. 806

[3] [E. Celikel, M. Kantarcioglu, B. Thuraisingham, and E. Bertino. A risk
management approach to RBAC. Risk and Decision Analysis, 1(2):21–
33, 2009. IOS Press.

[4] E. J. Coyne. Role-engineering. In Proceedings of the 1st ACM
Workshop on Role-Based Access Control, RBAC ’95, pages 15–16,
1995.

[5] V. Gligor. RBAC security policy model, preliminary draft report.
Technical report, R23 Research and Development Department of the
National Security Agency, 1995.

[6] A. Kern, M. Kuhlmann, A. Schaad, and J. Moffett. Observations on the
role life-cycle in the context of enterprise security management. In
Proceedings of the 7th ACM Symposium on Access Control Models and
Technologies, SACMAT ’02, pages 43–51, 2002.

IJAICT Volume 5, Issue 2, February 2018
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2015.10.08 Published on 05 (2) 2018

